Time-Reversal Symmetry and Arrow of Time in Quantum Mechanics of Open Systems

Author:

Hatano Naomichi,Ordonez GonzaloORCID

Abstract

It is one of the most important and long-standing issues of physics to derive the irreversibility out of a time-reversal symmetric equation of motion. The present paper considers the breaking of the time-reversal symmetry in open quantum systems and the emergence of an arrow of time. We claim that the time-reversal symmetric Schrödinger equation can have eigenstates that break the time-reversal symmetry if the system is open in the sense that it has at least a countably infinite number of states. Such eigenstates, namely the resonant and anti-resonant states, have complex eigenvalues. We show that, although these states are often called “unphysical”, they observe the probability conservation in a particular way. We also comment that the seemingly Hermitian Hamiltonian is non-Hermitian in the functional space of the resonant and anti-resonant states, and hence there is no contradiction in the fact that it has complex eigenvalues. We finally show how the existence of the states that break the time-reversal symmetry affects the quantum dynamics. The dynamics that starts from a time-reversal symmetric initial state is dominated by the resonant states for t > 0 ; this explains the phenomenon of the arrow of time, in which the decay excels the growth. The time-reversal symmetry holds in that the dynamic ending at a time-reversal symmetric final state is dominated by the anti-resonant states for t < 0 .

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference29 articles.

1. The Nature of the Physical World;Eddington,1928

2. Joseph Loschmidt, Physicist and Chemist

3. A unified formulation of dynamics and thermodynamics;Prigogine;Chem. Scr.,1973

4. From Being to Becoming: Time and Complexity in the Physical Sciences;Prigogine,1980

5. Dirac Kets, Gamow Vectors and Gel’fand Triplets: The Rigged Hilbert Space Formulation of Quantum Mechanics,1989

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3