Author:
Vergoossen Tom,Bedington Robert,Grieve James A.,Ling Alexander
Abstract
An application of quantum communications is the transmission of qubits to create shared symmetric encryption keys in a process called quantum key distribution (QKD). Contrary to public-private key encryption, symmetric encryption is considered safe from (quantum) computing attacks, i.e. it provides forward security and is thus attractive for secure communications. In this paper we argue that for free-space quantum communications, especially with satellites, if one assumes that man-in-the-middle attacks can be detected by classical channel monitoring techniques, simplified quantum communications protocols and hardware systems can be implemented that offer improved key rates. We term these protocols photon key distribution (PKD) to differentiate them from the standard QKD protocols. We identify three types of photon sources and calculate asymptotic secret key rates for PKD protocols and compare them to their QKD counterparts. PKD protocols use only one measurement basis which we show roughly doubles the key rates. Furthermore, with the relaxed security assumptions one can establish keys at very high losses, in contrast to QKD where at the same losses privacy amplification would make key generation impossible.
Funder
National Research Foundation Singapore
Subject
General Physics and Astronomy
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献