Big Earth Observation Data Integration in Remote Sensing Based on a Distributed Spatial Framework

Author:

Cheng Yinyi,Zhou Kefa,Wang Jinlin,Yan Jining

Abstract

The arrival of the era of big data for Earth observation (EO) indicates that traditional data management models have been unable to meet the needs of remote sensing data in big data environments. With the launch of the first remote sensing satellite, the volume of remote sensing data has also been increasing, and traditional data storage methods have been unable to ensure the efficient management of large amounts of remote sensing data. Therefore, a professional remote sensing big data integration method is sorely needed. In recent years, the emergence of some new technical methods has provided effective solutions for multi-source remote sensing data integration. This paper proposes a multi-source remote sensing data integration framework based on a distributed management model. In this framework, the multi-source remote sensing data are partitioned by the proposed spatial segmentation indexing (SSI) model through spatial grid segmentation. The designed complete information description system, based on International Organization for Standardization (ISO) 19115, can explain multi-source remote sensing data in detail. Then, the distributed storage method of data based on MongoDB is used to store multi-source remote sensing data. The distributed storage method is physically based on the sharding mechanism of the MongoDB database, and it can provide advantages for the security and performance of the preservation of remote sensing data. Finally, several experiments have been designed to test the performance of this framework in integrating multi-source remote sensing data. The results show that the storage and retrieval performance of the distributed remote sensing data integration framework proposed in this paper is superior. At the same time, the grid level of the SSI model proposed in this paper also has an important impact on the storage efficiency of remote sensing data. Therefore, the remote storage data integration framework, based on distributed storage, can provide new technical support and development prospects for big EO data.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference23 articles.

1. Opportunities for Geomatics;Li;Geomat. Inf. Sci. Wuhan Univ.,2004

2. Review of Forty Years of Technological Changes in Geomatics toward the Big Data Paradigm

3. The challenges of a Big Data Earth;Geoffrey;Big Earth Data,2018

4. Big Earth data: A new frontier in Earth and information sciences

5. United Nations Office for Outer Space Affairshttps://www.unoosa.org/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3