Modeling and Prediction of Regular Ionospheric Variations and Deterministic Anomalies

Author:

Rajabi Mahmoud,Amiri-Simkooei Alireza,Nahavandchi HosseinORCID,Nafisi Vahab

Abstract

Knowledge on the ionospheric total electron content (TEC) and its prediction are of great practical importance and engineering relevance in many scientific disciplines. We investigate regular ionospheric anomalies and TEC prediction by applying the least squares harmonic estimation (LS-HE) technique to a 15 year time series of the vertical TEC (VTEC) from 1998 to 2014. We first detected a few new regular and modulated signals in the TEC time series. The multivariate analysis of the time series indicates that there are diurnal, annual, 11 year, and 27 day periodic signals, as well as their higher harmonics. We also found periods matching with the global positioning system (GPS) draconitic year in the TEC time series. The results from the modulated harmonic analysis indicate that there exists a set of peaks with periods of 1 ± 0.0027 j ( j = 1 , … , 5 ) and 1 ± 0.00025 j ( j = 1 , 2 , 3 ) days. The same situation holds also true for the harmonics higher than the diurnal signal. A model is then adopted based on the discovered periods. This model, which consists of pure and modulated harmonic functions, is shown to be appropriate for assessing the regular variations and ionospheric anomalies. There is a clear maximum TEC at around 22:00 h, which we called the “evening anomaly”. The evening anomaly occurs in the winter and autumn, and is dependent on the solar activities. Also, the Semiannual, Winter, and Equatorial anomalies were investigated. Finally, to investigate the performance of the derived model, the TEC values have been predicted monthly, and the results show that the modulated signals can significantly contribute to obtaining superior prediction results. Compared with the pure signals, the modulated signals can improve a yearly average root mean squared error (RMSE) value in the lower and higher solar activities by 20% and 15%, respectively.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference42 articles.

1. The application of ionospheric data to radio communication problems: part II

2. The effect of the second order GPS ionospheric correction on receiver positions

3. Introduction to Ionospheric Physics;Rishbeth,1969

4. The Solar-Terrestrial Environment: An Introduction to Geospace-the Science of the Terrestrial Upper Atmosphere, Ionosphere, and Magnetosphere;Hargreaves,1992

5. Atmospheric Effects in Space Geodesy;Böhm,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3