Solid Precipitation and Visibility Measurements at the Centre for Atmospheric Research Experiments in Southern Ontario and Bratt’s Lake in Southern Saskatchewan

Author:

Boudala Faisal S.1ORCID,Milbrandt Jason A.2

Affiliation:

1. Meteorological Research Division, Environment and Climate Change Canada, North York, ON M3H 5T4, Canada

2. Meteorological Research Division, Environment and Climate Change Canada, Dorval, QC H9P 1J3, Canada

Abstract

Accurate measurement of solid precipitation (S) has a critical importance for proper understanding of the Earth’s hydrological cycle, validation of emerging technologies and weather prediction models, and developing parameterizations of severe weather elements such as visibility (Vis). However, measuring S is still a challenging problem, due mainly to wind effects. The wind effects are normally mitigated by using a Double-Fence Automated Reference (DFAR) system to reduce the wind speed (Ug). To contribute towards addressing some of these problems, we have analyzed datasets collected at two sites, Center for Atmospheric Research Experiments (CARE) and Bratt’s Lake, located in southern Ontario and southern Saskatchewan, Canada, respectively, using several instruments. The instruments at CARE include two Geonor gauges, one placed inside a DFAR (SDFAR) and the other inside a double Alter shield (DASG), a Pluvio2 gauge inside a single Alter shield (SASP), a HotPlate, a PARSIVEL2 disdrometer that measures S and fall velocity (V), and an FD12P senor that measures S and type and Vis. The instruments deployed in Bratt’s Lake includes a similar DFAR system and DAS Pluvio2 gauge. The results show that for the Ug observed in this study (Ug < 6 ms−1), both DASG and SASP have similar collection efficiency (CE) of near 70%. The transfer functions (TF) for DASG and SASP as a function of Ug and also Ug, and V were derived. The TF developed for the DASG that includes both Ug and V showed better agreement with observation than just Ug alone. The TF developed for DASG at CARE site was tested using the data collected in Bratt’s Lake and correlated well (R = 0.86), but slightly overestimated the S accumulation by about 12%. The S measured at CARE site using all the other instruments were correlated well with SDFAR (R = 0.9), but the PARSIVEL2 and FD12P overestimated and underestimated the snow amount, respectively, as compared the SDFAR. However, the HotPlate captured similar amount of S as the SDFAR. According to this study, the SDFAR showed good correlation with Vis.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3