Snow Cover on the Tibetan Plateau and Topographic Controls

Author:

Chu Duo12,Liu Linshan3ORCID,Wang Zhaofeng3

Affiliation:

1. Tibet Institute of Plateau Atmospheric and Environmental Sciences, Tibet Meteorological Bureau, Lhasa 850000, China

2. Tibet Key Laboratory of Plateau Atmosphere and Environment Research, Science and Technology Department of Tibet Autonomous Region, Lhasa 850000, China

3. Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

Abstract

Snow cover plays a critical role in global energy and water cycles. Snow cover on the Tibetan Plateau (TP) provides vital water sources in western China and Himalayan regions, in addition to its weather and climate significance. The massive high mountain topography of the TP is the main condition for the presence and persistence of snow cover on the plateau at the mid-low latitudes of the Northern Hemisphere (NH). However, how the mountain topography controls snow-cover distribution on the TP remains largely unclear, and the relationship is not well quantified. Here, the spatial distribution and the topographic controls of snow cover on the TP are examined based on snow cover frequency (SCF) derived from MODIS snow cover product (MOD10A2 v005) and digital elevation model (DEM) data. The results show that snow cover on the TP is spatially unevenly distributed, and that it is characterized by rich snow and high SCF on the interior and the surrounding high mountain ranges, with less snow and low SCF in inland basins and river valleys. Snow cover on the TP presents elevation dependence: the higher the altitude, the higher the SCF, the longer the snow cover duration, and the more stable the intra-annual variation. The annual mean SCF below 3000 m above sea level (m a.s.l) is less than 4%, and it reaches 77% above 6000 m a.s.l. The intra-annual snow cover variation below 4000 m a.s.l features a unimodal distribution, while above 4000 m a.s.l it presents a bimodal distribution. The mean minimum SCF below 6000 m a.s.l occurs in summer, while above 6000 m a.s.l it occurs in winter. Due to differences in solar radiation and moisture condition caused by the mountain slope and aspect, the mean SCF generally increases with mountain slopes, and it is the highest on the north-facing aspect and the lowest on the south-facing aspect.

Funder

Second Tibetan Plateau Scientific Expedition and Research (STEP) programme

Independent Research Project of Science and Technology Innovation Base of Tibet Autonomous Region

Key Science and Technology Project of Tibet Autonomous Region

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3