Localization of Mobile Robots Based on Depth Camera

Author:

Yin Zuoliang1,Wen Huaizhi2,Nie Wei2,Zhou Mu2ORCID

Affiliation:

1. College of Electronics and Information, Qingdao University, Qingdao 266071, China

2. School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Abstract

In scenarios of indoor localization of mobile robots, Global Positioning System (GPS) signals are prone to loss due to interference from urban building environments and cannot meet the needs of robot localization. On the other hand, traditional indoor localization methods based on wireless signals such as Bluetooth and WiFi often require the deployment of multiple devices in advance, and these methods can only obtain distance information and are unable to obtain the attitude of the positioning target in space. This paper proposes a method for the indoor localization of mobile robots based on a depth camera. Firstly, we extracted ORB feature points from images captured by a depth camera and performed homogenization processing. Then, we performed feature matching between adjacent two frames of images, and the mismatched points are eliminated to improve the accuracy of feature matching. Finally, we used the Iterative Closest Point (ICP) algorithm to estimate the camera’s pose, thus achieving the localization of mobile robots in indoor environments. In addition, an experimental evaluation was conducted on the TUM dataset of the Technical University of Munich to validate the feasibility of the proposed depth-camera-based indoor localization system for mobile robots. The experimental results show that the average localization accuracy of our algorithm on three datasets is 0.027 m, which can meet the needs of indoor localization for mobile robots.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3