The Minimum Temperature Outweighed the Maximum Temperature in Determining Plant Growth over the Tibetan Plateau from 1982 to 2017

Author:

Li Xi123,Zhang Ke123456,Li Xin34ORCID

Affiliation:

1. The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210024, China

2. Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210024, China

3. College of Hydrology and Water Resources, Hohai University, Nanjing 210024, China

4. China Meteorological Administration Hydro-Meteorology Key Laboratory, Hohai University, Nanjing 210024, China

5. Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University, Nanjing 210024, China

6. Key Laboratory of Hydrologic-Cycle and Hydrodynamic-System of Ministry of Water Resources, Hohai University, Nanjing 210024, China

Abstract

The Tibetan Plateau (TP) plays a crucial role in the climate change of China as well as global climate change. It is therefore of great practical significance to study vegetation and its dynamic changes for regional ecological protection. The combination of a dry climate and notable temperature disparities can lead to intricate effects on the region’s vegetation. However, there are few studies exploring the complex effects of diurnal temperature variations on vegetation growth that differ from the effects of mean temperature on the TP, especially under different frozen ground types. Based on the long-time series maximum temperature (Tmax), minimum temperature (Tmin), and Normalized Difference Vegetation Index (NDVI) of the TP, we conducted a comparative study of the warming effects on plant growth under different frozen types. The results exhibit that it warms up faster at night (0.223 °C de−1; p < 0.01) than during the day (0.06 °C de−1; p < 0.01), resulting in a significant decrease in the temperature difference between day and night (−0.078 °C de−1; p < 0.01) in the past few decades. The principal finding of this paper is that Tmin is the dominant temperature indicator for vegetation growth on the TP, which dominates 63.3% of the area for NDVI and 61.4% of the area for GPP, respectively. The results further identify a stronger correlation between air temperature and vegetation growth in seasonal frozen grounds (R = 0.68, p < 0.01) and permafrost regions (R = 0.7, p < 0.01) compared to unfrozen grounds (R = 0.58, p < 0.01). Moreover, the physiological mechanism underlying the asymmetric influence of Tmin and Tmax on vegetation growth is further elucidated in this study. Given that future climate changes are expected to exacerbate these changes, it is imperative to explore additional avenues in pursuit of potential mechanisms that can offer adaptive strategies for safeguarding the ecology of the TP.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3