High-Resolution National-Scale Mapping of Paddy Rice Based on Sentinel-1/2 Data

Author:

Huang Chenhao12ORCID,You Shucheng3,Liu Aixia3,Li Penghan12,Zhang Jianhua12,Deng Jinsong12

Affiliation:

1. College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China

2. Zhejiang Ecological Civilization Academy, Huzhou 313300, China

3. Land Satellite Remote Sensing Application Center, MNR, Beijing 100048, China

Abstract

Rice has always been one of the major food sources for human beings, and the monitoring and planning of cultivation areas to maintain food security and achieve sustainable development is critical for this crop. Traditional manual ground survey methods have been recognized as being laborious, while remote-sensing technology can perform the accurate mapping of paddy rice due to its unique data acquisition capabilities. The recently emerged Google Earth Engine (GEE) cloud-computing platform was found to be capable of storing and computing the resources required for the rapid processing of massive quantities of remote-sensing data, thereby revolutionizing traditional analysis patterns and offering unique advantages for large-scale crop mapping. Since the phenology of paddy rice depends on local climatic conditions, and considering the vast expanse of China with its outstanding geospatial heterogeneity, a zoning strategy was proposed in this study to separate the monsoon climate zone of China into two regions based on the Qinling Mountain–Huaihe River Line (Q-H Line), while discrepant basic data and algorithms have been adopted to separately map mid-season rice nationwide. For the northern regions, optical indices have been calculated based on Sentinel-2 images, growth spectral profiles have been constructed to identify phenological periods, and rice was mapped using One-Class Support Vector Machine (OCSVM); for the southern regions, microwave sequences have been constructed based on Sentinel-1 images, and rice was mapped using Random Forest (RF). By applying this methodological system, mid-season rice at 10 m spatial resolution was mapped on the GEE for the entire Chinese monsoon region in 2021. According to the accuracy evaluation coefficients and publicly released local statistical yearbook data, the relative error of the mapped areas in each province was limited to 10%, and the overall accuracy exceeded 85%. The results could indicate that mid-season rice can be mapped more accurately and efficiently on a China-wide scale with relatively few samples based on the proposed zoning strategy and mapping methods. By adjusting the parameters, the time interval for mapping could also be further extended. The powerful cloud-computing competence of the GEE platform was used to map rice on a large spatial scale, and the results can help governments to ascertain the distribution of mid-season rice across the country in a short-term period, which would be well suited to meeting the increasingly efficient and fine-grained decision-making and management requirements.

Funder

Outsourcing Project of the Center for Remote Sensing Application of Land and Satellite, Ministry of Natural Resources, the Consulting Project of Chinese Academy of Engineering

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3