Strategy for Exploring Feasible and Infeasible Solution Spaces to Solve a Multiple-Vehicle Bike Sharing System Routing Problem

Author:

Tsushima HonamiORCID,Matsuura TakafumiORCID,Ikeguchi TohruORCID

Abstract

In bicycle sharing systems, many vehicles restore bicycles to ports. To construct the shortest tour of these vehicles, in a previous work, we formulated the multiple-vehicle bike sharing system routing problem (mBSSRP) and demonstrated that an optimal solution can be obtained for small-sized instances through a general-purpose mixed-integer linear programming solver. However, for large-sized instances, the optimal solution could not be found in a reasonable time frame. Therefore, to find near-optimal solutions for the mBSSRPs in a short time, in this study, we develop a method with a searching strategy, which explores both the feasible and infeasible solution spaces. To investigate the performance of the proposed method, we solve benchmark problems of mBSSRP. In addition, we compare the proposed method with the method exploring only the feasible solution space, in terms of performance. The results of the numerical experiments demonstrate that the proposed method can reach optimal solutions for almost all small-sized mBSSRP instances and that searching both the feasible and infeasible solution spaces yields good feasible solutions both for small-sized and large-sized instances.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tabu search for solving multiple-vehicle bike sharing system routing problem with real port distribution;2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME);2022-11-16

2. Searching Strategies with Low Computational Costs for Multiple-Vehicle Bike Sharing System Routing Problem;Applied Sciences;2022-03-04

3. Statistical analysis of usage history of bicycle sharing systems;Nonlinear Theory and Its Applications, IEICE;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3