Abstract
The alternative load path method is widely used to assess the progressive collapse performance of reinforced concrete structures. As an alternative to an accurate non–linear dynamic analysis, an energy–based method (EBM) can also be adopted to approximately calculate the dynamic load–bearing capacity curve or the dynamic resistance based on a static capacity curve. However, dynamic effects cannot be explicitly taken into account in the EBM. The model uncertainty associated with the use of the EBM for evaluating the dynamic ultimate capacity of structural frames has not yet been quantified. Knowledge of this model uncertainty is however necessary when applying EBM as part of reliability calculations, for example, in relation to structural robustness quantification. Hence, this article focuses on the evaluation of the performance of the EBM and the quantification of its model uncertainty in the context of reliability–based assessments of progressive or disproportionate collapse. The influences of damping effects and different column removal scenarios are investigated. As a result, it is found that damping effects have a limited influence on the performance of the EBM. In the case of an external column removal scenario, the performance of the EBM is lower as the response is not a single deformation mode according to the results in the frequency domain. However, a good performance is found in the case of an internal column removal scenario in which the assumption of a single deformation mode is found to be sufficiently adequate. Probabilistic models for the model uncertainties related to the use of the EBM compared to direct dynamic analyses are proposed in relation to both the resistances and the associated displacements. Overall, the EBM shows to be an adequate approximation, resulting in a small bias and small standard deviation for its associated model uncertainty.
Funder
China Scholarship Council
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献