Abstract
In most steelmaking processes, huge amounts of waste heat at high temperature (700–800 °C) are thrown into the environment without any use. An alternative use for this waste heat is electricity generation through thermoelectric generators. However, these high temperatures, as well as their fluctuations over time, affect not only the conversion rate of the thermoelectric generator but also its useful lifetime. The incorporation of a latent thermal energy storage (TES) system could be a solution; nevertheless, the thermal stability and corrosive effect of the (PCM) phase change material are key aspects for the thermal storage system definition, in terms of durability. In this work, developed in the framework of the European project “PowGETEG” (RFSR-CT-2015-00028, funded by the Research Fund for Coal and Steel), a high-temperature analysis (700–800 °C) of the Li2CO3 thermal properties, thermal stability and corrosive effect on the AISI 304 and AISI 310 stainless steels is carried out. The results show that the eutectic salt Li2CO3 exhibits high thermal stability with neither change in its thermal properties nor material degradation. This work shows that lithium carbonate Li2CO3 and AISI 310 make a very good combination for the definition of a thermal storage system able to protect a high-temperature thermoelectric converter from temperature variations, making it more reliable.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献