LSLSD: Fusion Long Short-Level Semantic Dependency of Chinese EMRs for Event Extraction

Author:

Zhai Pengjun,Wang Chen,Fang Yu

Abstract

Most existing medical event extraction methods have primarily adopted a simplex model based on either pattern matching or deep learning, which ignores the distribution characteristics of entities and events in the medical corpus. They have not categorized the granularity of event elements, leading to the poor generalization ability of the model. This paper proposes a diagnosis and treatment event extraction method in the Chinese language, fusing long short-level semantic dependency of the corpus, LSLSD, for solving these problems. LSLSD can effectively capture different levels of semantic information within and between event sentences in the electronic medical record (EMR) corpus. Moreover, the event arguments are divided into short word-level and long sentence-level, with the sequence annotation and pattern matching combined to realize multi-granularity argument recognition, as well as to improve the generalization ability of the model. Finally, this paper constructs a diagnosis and treatment event data set of Chinese EMRs by proposing a semi-automatic corpus labeling method, and an enormous number of experiment results show that LSLSD can improve the F1-value of event extraction task by 7.1% compared with the several strong baselines.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference34 articles.

1. Visual Progression Analysis of Event Sequence Data

2. DPVis: Visual exploration of disease progression pathways;Kwon;arXiv,2019

3. CarePre

4. Deep Learning for Electronic Health Records Analytics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chinese Event Extraction Algorithm of Multi-Information Semantic Enhancements;2023 12th International Conference on Computing and Pattern Recognition;2023-10-27

2. EmergEventMine: End-to-End Chinese Emergency Event Extraction Using a Deep Adversarial Network;ISPRS International Journal of Geo-Information;2022-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3