Abstract
The paper presents the design and testing of a new servo drive for turning non-circular shapes. The presented solution is based on a commercially available piezoelectric drive unit with a stroke equal to 1000 µm and a resonant frequency of 150 Hz. The device was used in a conventional turning lathe and installed in a tool turret. The performance of the proposed tool was tested while turning multiple non-circular contours from a cylindrical shaft made of 6082 aluminum alloy. The machining accuracy was tested online using a laser sensor and offline with a coordinate measuring machine. The additional aim of those tests was also to verify if the application of an online transducer can allow a confident preliminary assessment of as-machined geometry. The drive positioning accuracy was compensated using 6th order polynomial what resulted in the fabrication of non-circular contours with an accuracy of no less than 39.8 µm when operating below the limit frequency of the drive (<9 Hz). It was found out that the deviations of the profile from ideal geometries increase linearly with frequency when turning at higher than the limit frequency.
Funder
Polish Ministry of Science and Education as a part of research subsidy
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献