Author:
Xing Lei,Yu Jingui,Ji Zhiyong,Huang Xingjiu,Dai Chaoyuan,Zhang Qiaoxin
Abstract
Superhydrophobic surfaces are used in aerospace, medical equipment, transportation, household appliances and other fields due to their special interface characteristics. In this paper, a superhydrophobic surface is prepared by Selective Laser Melting (SLM) 3D-printed technology, comparing the effects of different post-treatment methods and time on corrosion resistance, and revealing the root cause of the transition from hydrophilic to superhydrophobic. The test results show that for samples not treated with fluoro-silane, the microstructure adsorbs the organic matter in the air and reduces the surface energy, which is the root cause of the sample surface changing from hydrophilic to superhydrophobic. In addition, the corrosion resistance of 3D-printed, polished, 3D-printed + modified, and 3D-printed + corroded samples are analyzed. Among them, 3D-printed + modified samples have a longer resistance to corrosion, and after placing in outdoor natural conditions for 60 days, the contact angle of water droplets on the surface is 150.8°, which still has superhydrophobic properties and excellent natural durability.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献