Creating Tactile Educational Materials for the Visually Impaired and Blind Students Using AI Cloud Computing

Author:

See Aaron RaymondORCID,Advincula Welsey DanielORCID

Abstract

There are 24.5 million visually impaired and blind (VIB) students who have limited access to educational materials due to cost or availability. Although advancement in technology is prevalent, providing individualized learning using technology remains a challenge without the proper tools or experience. The TacPic system was developed as an online platform to create tactile educational materials (TEM) based on the image inputs of users who do not have prior experience in tactile photo development or 3D printing. The TacPic system allows the users to simply upload images to a website and uses AI cloud computing on the Amazon Web Services platform. First, it segments and labels the images. Then, the text label is converted into braille words. Subsequently, surface rendering and consolidation of the image and text is performed, before it is converted into a single file that is ready for 3D printing. Currently, the types of TEM that can be created are tactile flashcards, tactile maps, and tactile peg puzzles, which can be developed within a few hours. This is in contrast to a development period of weeks using traditional methods. Furthermore, the tactile educational materials were tested by two VIB teachers and six VIB students. It was found that those who are congenitally blind need more time to identify the object and rely more on the braille labels compared to students who became blind at a later age. Teachers also suggested producing TEM that use simpler images, and TEM that are suitable for both sighted and VIB students. In conclusion, the researchers successfully developed a platform that allows more educators or parents to develop personalized and individualized TEM. In the future, further optimization of the algorithms to improve segmentation and the inclusion of other features, such as color, could be undertaken. Finally, new printing materials and methods are needed to improve printing efficiency.

Funder

Ministry of Science and Technology, Taiwan

Ministry of Education

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3