Development of Wireless and Passive SAW Temperature Sensor with Very High Accuracy

Author:

Gao Xu,Cheng Lina,Xue Xufeng,Zhai Shoupei,Liang Yong,Wang Wen,Liu Mengwei,Zhu Jialiang,Li Zhuoyue

Abstract

A surface acoustic wave (SAW) temperature sensor with high accuracy was developed and wirelessly characterized in this work. The sensing chip with reflective delay line pattern was simulated using typical coupling of modes (COM) model and prepared by the standard photolithographic technique. Sharp reflection peaks with high signal-to-noise (SNR) were observed from the developed sensing chip operating at 433 MHz. Referring to the frequency-stepped continuous wave (FSCW)-based transceiver, planar antennas, and the developed SAW chip, the wireless and passive temperature sensor system was built. Adaptive Least Mean Square (LMS) algorithm was used for the first time in the SAW sensor signal processing to significantly improve the system SNR, and the corresponding phase fluctuation is down to only 3°. High temperature sensitivity of 36.5 °C and very high accuracy of ±0.2 °C in the range of −30 °C∼100 °C were achieved successfully by wireless measurement.

Funder

NSFC Joint Key Fund Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3