Two- and Three-Dimensional Numerical Investigation of the Influence of Holes on the Fatigue Crack Growth Path

Author:

Fageehi Yahya AliORCID

Abstract

Problems in fracture mechanics are difficult when the appropriate analysis is unspecified, which is very common in most real-life situations. Finite element modeling is thus demonstrated to be an essential technique to overcome these problems. There are currently various software tools available for modeling fracture mechanics problems, but they are usually difficult to use, and obtaining accurate results is not an obvious task. This paper illustrates some procedures in two finite element programs to solve problems in two- and three-dimensional linear-elastic fracture mechanics, and an educational proposal is made to use this software for a better understanding of fracture mechanics. Crack modeling was done in a variety of ways depending on the software. The first is the well-known ANSYS, which is usually utilized in industry, and the second was a freely distributed code, called FRANC2D/L, from Cornell University. These software applications were used to predict the fatigue crack growth path as well as the associated stress intensity factors. The predicted results demonstrate that the fatigue crack is turned towards the hole. The fatigue crack growth paths are influenced by the varying positions and sizes of single holes, while two symmetrically distributed holes have no effect on the fatigue crack growth direction. The findings of the study agree with other experimental crack propagation studies presented in the literature that reveal similar crack propagation trajectory observations.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3