Re-Visiting Acoustic Sounding to Advance the Measurement of Optical Turbulence

Author:

Fiorino StevenORCID,Bose-Pillai Santasri,Keefer Kevin

Abstract

Optical turbulence, as determined by the widely accepted practice of profiling the temperature structure constant, CT2, via the measurement of ambient atmospheric temperature gradients, can be found to differ quite significantly when characterizing such gradients via thermal-couple differential temperature sensors as compared to doing so with acoustic probes such as those commonly used in sonic anemometry. Similar inconsistencies are observed when comparing optical turbulence strength derived via CT2 as compared to those through direct optical or imaging measurements of small fluctuations of the index of refraction of air (i.e., scintillation). These irregularities are especially apparent in stable atmospheric layers and during diurnal quiescent periods. Our research demonstrates that when care is taken to properly remove large-scale index of refraction gradients, the sonic anemometer-derived velocity structure constant, Cv2, coupled with the similarly derived turbulence-driven index of refraction and vertical wind shear gradients, provides a refractive index structure constant, Cn2, that can more closely match the optical turbulence strengths inferred by more direct means such as scintillometers or differential image motion techniques. The research also illustrates the utility and robustness of quantifying Cn2 from CT2 at a point using a single sonic anemometer and establishes a clear set of equations to calculate volumetric Cn2 data using instrumentation that measures wind velocities with more spatial/temporal fidelity than temperature.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3