Evaluation of Machine Learning Models for Estimating PM2.5 Concentrations across Malaysia

Author:

Zaman Nurul Amalin Fatihah Kamarul,Kanniah Kasturi DeviORCID,Kaskaoutis Dimitris G.ORCID,Latif Mohd TalibORCID

Abstract

Southeast Asia (SEA) is a hotspot region for atmospheric pollution and haze conditions, due to extensive forest, agricultural and peat fires. This study aims to estimate the PM2.5 concentrations across Malaysia using machine-learning (ML) models like Random Forest (RF) and Support Vector Regression (SVR), based on satellite AOD (aerosol optical depth) observations, ground measured air pollutants (NO2, SO2, CO, O3) and meteorological parameters (air temperature, relative humidity, wind speed and direction). The estimated PM2.5 concentrations for a two-year period (2018–2019) are evaluated against measurements performed at 65 air-quality monitoring stations located at urban, industrial, suburban and rural sites. PM2.5 concentrations varied widely between the stations, with higher values (mean of 24.2 ± 21.6 µg m−3) at urban/industrial stations and lower (mean of 21.3 ± 18.4 µg m−3) at suburban/rural sites. Furthermore, pronounced seasonal variability in PM2.5 is recorded across Malaysia, with highest concentrations during the dry season (June–September). Seven models were developed for PM2.5 predictions, i.e., separately for urban/industrial and suburban/rural sites, for the four dominant seasons (dry, wet and two inter-monsoon), and an overall model, which displayed accuracies in the order of R2 = 0.46–0.76. The validation analysis reveals that the RF model (R2 = 0.53–0.76) exhibits slightly better performance than SVR, except for the overall model. This is the first study conducted in Malaysia for PM2.5 estimations at a national scale combining satellite aerosol retrievals with ground-based pollutants, meteorological factors and ML techniques. The satisfactory prediction of PM2.5 concentrations across Malaysia allows a continuous monitoring of the pollution levels at remote areas with absence of measurement networks.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3