Abstract
The flow field is difficult to evaluate, and underwater robotics can only partly adapt to the submarine environment. However, fish can sense the complex underwater environment by their lateral line system. In order to reveal the fish flow sensing mechanism, a robust nonlinear signal estimation method based on the Volterra series model with the Kautz kernel function is provided, which is named KKF-VSM. The flow field signal around a square target is used as the original signal. The sinusoidal noise and the signal around a triangular obstacle are considered undesired signals, and the predicting performance of KKF-VSM is analyzed after introducing them locally in the original signals. Compared to the radial basis function neural network model (RBF-NNM), the advantages of KKF-VSM are not only its robustness but also its higher sensitivity to weak signals and its predicting accuracy. It is confirmed that even for strong nonlinear signals, such as pressure responses in the flow field, KKF-VSM is more efficient than the commonly used RBF-NNM. It can provide a reference for the application of the artificial lateral line system on underwater robotics, improving its adaptability in complex environments based on flow field information.
Funder
TIANJIN ENTERPRISE SCIENCE AND TECHNOLOGY COMMISSIONER PROGECT
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献