Abstract
Artificial intelligence applications in fire safety of agricultural structures have practical economic and technological benefits on commercial agriculture. The FAO estimates that wildfires result in at least USD 1 billion in agriculture-related losses due to the destruction of livestock pasture, destruction of agricultural buildings, premature death of farm animals, and general disruption of agricultural activities. Even though artificial neural networks (ANNs), genetic algorithms (GAs), probabilistic neural networks (PNNs), and adaptive neurofuzzy inference systems (ANFISs), among others, have proven useful in fire prevention, their application is limited in real farm environments. Most farms rely on traditional/non-technology-based methods of fire prevention. The case for AI in agricultural fire prevention is grounded on the accuracy and reliability of computer simulations in smoke movement analysis, risk assessment, and postfire analysis. In addition, such technologies can be coupled with next-generation fire-retardant materials such as intumescent coatings with a polymer binder, blowing agent, carbon donor, and acid donor. Future prospects for AI in agriculture transcend basic fire safety to encompass Society 5.0, energy systems in smart cities, UAV monitoring, Agriculture 4.0, and decentralized energy. However, critical challenges must be overcome, including the health and safety aspects, cost, and reliability. In brief, AI offers unlimited potential in the prevention of fire hazards in farms, but the existing body of knowledge is inadequate.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献