Study on the Inter-Electrode Process of Aluminum Electrolysis (Ⅱ)—Digital Analysis of the Anode Gas Distribution Patterns on the Anode Surface Using A See-Through Cell

Author:

Yang YoujianORCID,Zhang Yuankun,Yu Jiangyu,Wang Zhaowen,Shi Zhongning

Abstract

The evolution behavior of anode gas during aluminum electrolysis has been a hot spot of research for energy saving and process control. In the present work, the bubble evolution behavior during aluminum electrolysis was investigated using a lab-scale see-though cell. The bubble evolution characters on an 11 cm2 (bottom surface area) flat anode, an 11 cm2 slotted anode, and a 50 cm2 flat anode were investigated with statistical analysis, respectively. The results showed that bubbles tended to generate and adhere to certain regions on the anode surface due to the heterogeneity of the carbon material, and the adhering regions moved when current density was increased. The anode slot lowered the actual current density on the anode significantly by reducing the anode bubble coverage. Influenced by the group effect of bubbles, the 50 cm2 flat anode behavior constituted a lower bubble coverage rate, lower average bubble size, and lower actual current density than the 11 cm2 flat anode.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference21 articles.

1. Aluminium Smelter Technology: A Pure and Applied Approach;Grjotheim,1980

2. Textbook of Aluminum Electrolysis: Fundamentals of the Hall-Héroult Process;Grjotheim,1982

3. Structure and Thermodynamics of Alkali Fluoride−Aluminum Fluoride−Alumina Melts. Vapor Pressure, Solubility, and Raman Spectroscopic Studies

4. Anodic and Cathodic Current Efficiency in Electrolysis of Cryolite-Alumina Melts;Ginsberg;Metall,1972

5. Computational Modeling of Flow in Aluminum Reduction Cells Due to Gas Bubbles and Electromagnetic Forces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3