Artificial Intelligence for Prediction of Physical and Mechanical Properties of Stabilized Soil for Affordable Housing

Author:

Taffese Woubishet ZewduORCID,Abegaz Kassahun Admassu

Abstract

Soil stabilization is the alteration of physicomechanical properties of soils to meet specific engineering requirements of problematic soils. Laboratory examination of soils is well recognized as appropriate for examining the engineering properties of stabilized soils; however, they are labor-intensive, time-consuming, and expensive. In this work, four artificial intelligence based models (OMC-EM, MDD-EM, UCS-EM+, and UCS-EM−) to predict the optimum moisture content (OMC), maximum dry density (MDD), and unconfined compressive strength (UCS) are developed. Experimental data covering a wide range of stabilized soils were collected from previously published works. The OMC-EM, MDD-EM, and UCS-EM− models employed seven features that describe the proportion and types of stabilized soils, Atterberg limits, and classification groups of soils. The UCS-EM+ model, besides the seven features, employs two more features describing the compaction properties (OMC and MDD). An optimizable ensemble method is used to fit the data. The model evaluation confirms that the developed three models (OMC-EM, MDD-EM, and UCS-EM+) perform reasonably well. The weak performance of UCS-EM− model validates that the features OMC and MDD have substantial significance in predicting the UCS. The performance comparison of all the developed ensemble models with the artificial neural network ones confirmed the prediction superiority of the ensemble models.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3