MFCosface: A Masked-Face Recognition Algorithm Based on Large Margin Cosine Loss

Author:

Deng HongxiaORCID,Feng Zijian,Qian Guanyu,Lv Xindong,Li Haifang,Li Gang

Abstract

The world today is being hit by COVID-19. As opposed to fingerprints and ID cards, facial recognition technology can effectively prevent the spread of viruses in public places because it does not require contact with specific sensors. However, people also need to wear masks when entering public places, and masks will greatly affect the accuracy of facial recognition. Accurately performing facial recognition while people wear masks is a great challenge. In order to solve the problem of low facial recognition accuracy with mask wearers during the COVID-19 epidemic, we propose a masked-face recognition algorithm based on large margin cosine loss (MFCosface). Due to insufficient masked-face data for training, we designed a masked-face image generation algorithm based on the detection of the detection of key facial features. The face is detected and aligned through a multi-task cascaded convolutional network; and then we detect the key features of the face and select the mask template for coverage according to the positional information of the key features. Finally, we generate the corresponding masked-face image. Through analysis of the masked-face images, we found that triplet loss is not applicable to our datasets, because the results of online triplet selection contain fewer mask changes, making it difficult for the model to learn the relationship between mask occlusion and feature mapping. We use a large margin cosine loss as the loss function for training, which can map all the feature samples in a feature space with a smaller intra-class distance and a larger inter-class distance. In order to make the model pay more attention to the area that is not covered by the mask, we designed an Att-inception module that combines the Inception-Resnet module and the convolutional block attention module, which increases the weight of any unoccluded area in the feature map, thereby enlarging the unoccluded area’s contribution to the identification process. Experiments on several masked-face datasets have proved that our algorithm greatly improves the accuracy of masked-face recognition, and can accurately perform facial recognition with masked subjects.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanxi Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Revealing the Unseen: Explainable AI-Driven Masked Face Recognition;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

2. Real-time masked face recognition using deep learning-based double generator network;Signal, Image and Video Processing;2024-04-30

3. MaskDUF: Data uncertainty learning in masked face recognition with mask uncertainty fluctuation;Expert Systems with Applications;2024-03

4. Masked Face Transformer;IEEE Transactions on Information Forensics and Security;2024

5. A Survey of Masked Face Recognition Methods and Corpora/Data;Springer Geography;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3