Experimental Evaluation and Theoretical Optimization of an Indirect Solar Dryer with Forced Ventilation under Tropical Climate by an Inverse Artificial Neural Network

Author:

Moheno-Barrueta M.,Tzuc O. MayORCID,Martínez-Pereyra G.,Cardoso-Fernández V.ORCID,Rojas-Blanco L.,Ramírez-Morales E.ORCID,Pérez-Hernández G.,Bassam A.ORCID

Abstract

In this theoretical–experimental study is presented a hybridization strategy based on the application of an inverse artificial neural network model (ANNi) coupled with metaheuristic optimization algorithms to optimize the drying velocity (vd) of an active indirect solar dryer for plantain and taro (Colocasia antiquorum). In the experimental stage, both fruits were evaluated in periods from 9:00 a.m. to 5:00 p.m. under a humid tropical climate region, varying the voltage of the air extractor fan (at 6 V, 9 V, and 12 V) to control the fan velocity. The experimental results showed that the maximum drying velocities were reached at 9 V, achieving a drying velocity of 1.5, 0.9, and 0.55 g/min, with a total drying time of 465 min for the taro, and 1.46, 1.46, and 0.36 g/min, with a total drying time of 495 min, for the plantain. As a result of the drying curves, it was observed that the drying velocity is higher in taro than in plantain. Subsequently, an artificial neural network (ANN) architecture was trained using the database generated from the solar dryer’s experimental stage. Six environmental variables and one operational variable were considered as the model’s inputs, feeding the ANN to estimate the drying velocity (vd), obtaining a linear regression coefficient R = 0.9822 between the experimental and simulated data. A sensitivity analysis was performed to determine the impact of all the input variables. A hybrid strategy based on ANNi was developed and evaluated with three metaheuristic optimization algorithms; the best result was obtained by genetic algorithms (ANNi-GA) with an error percentage of 0.83% and an average computational time of 4.3 s. The scope of this optimization strategy was to obtain a theoretical result that allows predicting the behavior of the dryer and improving its performance for its practical application in future work through the implementation in development boards. Lastly, the optimization strategy presented is not limited to indirect solar dryers and opens a research window for evaluating other solar drying technologies.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference52 articles.

1. Zona Sur-Sureste, Potencial Agrícolahttps://www.20minutos.com.mx/noticia/459003/0/zona-sur-sureste-region-con-tremendo-potencial-agricola/

2. Análisis del Centro de Investigación Económica y Presupuestariahttps://www.eleconomista.com.mx/estados/Sur-sureste-con-el-mayor-crecimiento-agropecuario-20180216-0019.html

3. Comparison of Traditional and Novel Drying Techniques and Its Effect on Quality of Fruits, Vegetables and Aromatic Herbs

4. Solar dryers for food applications: Concepts, designs, and recent advances

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3