Direction-Based Hybrid Strategy Combining Pushing and Hitting for Fast Object Singulation

Author:

Khan Muhammad Umair Ahmad,Kim SanghwaORCID,Lee Ji Yeong,Yi Byung-Ju

Abstract

This paper presents a hybrid singulation strategy for fast object singulation in a cluttered environment. Recent techniques related to object singulation in clutter have employed various kinds of pushing techniques and in some cases have also used hitting techniques. However, these techniques have not addressed the issue related to the direction of pushing and hitting which is vital for fast object singulation. Finding the appropriate direction of hitting and pushing helps in singulating objects quickly in a cluttered environment. This paper proposes the desired direction for pushing and hitting, combined with a hybrid strategy, that results in fast object singulation in a cluttered environment. The number of times of pushing and hitting in terms of time is chosen as the measure of performance. We employ multiple circular disks as the test example and carry out diverse experiments to corroborate the usefulness of the proposed object singulation algorithm. This approach is able to singulate objects quickly in complex formations. In this paper, we have combined both pushing and hitting and also proposed the direction of hitting and pushing in order to singulate objects in clutter quickly.

Funder

Ministry of Trade, Industry & Energy

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3