Dual-Input Slope Seeking Control of Continuous Micro-Algae Cultures with Experimental Validation

Author:

Feudjio Letchindjio Christian,Zamudio Lara JesúsORCID,Dewasme LaurentORCID,Hernández Escoto Héctor,Vande Wouwer AlainORCID

Abstract

This paper investigates the application of adaptive slope-seeking strategies to dual-input single output dynamic processes. While the classical objective of extremum seeking control is to drive a process performance index to its optimum, this paper also considers slope seeking, which allows driving the performance index to a desired level (which is thus sub-optimal). Moreover, the consideration of more than one input signal allows minimizing the input energy thanks to the degrees of freedom offered by the additional inputs. The actual process is assumed to be locally approachable by a Hammerstein model, combining a nonlinear static map with a linear dynamic model. The proposed strategy is based on the interplay of three components: (i) a recursive estimation algorithm providing the model parameters and the performance index gradient, (ii) a slope generator using the static map parameter estimates to convert the performance index setpoint into slope setpoints, and (iii) an adaptive controller driving the process to the desired setpoint. The performance of the slope strategy is assessed in simulation in an application example related to lipid productivity optimization in continuous cultures of micro-algae by acting on both the incident light intensity and the dilution rate. It is also validated in experimental studies where biomass production in a continuous photo-bioreactor is targeted.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3