Fault Diagnosis of Intelligent Production Line Based on Digital Twin and Improved Random Forest

Author:

Guo Kai,Wan Xiang,Liu Lilan,Gao Zenggui,Yang Muchen

Abstract

Digital twin (DT) is a key technology for realizing the interconnection and intelligent operation of the physical world and the world of information and provides a new paradigm for fault diagnosis. Traditional machine learning algorithms require a balanced dataset. Training and testing sets must have the same distribution. Training a good generalization model is difficult in an actual production line operation process. Fault diagnosis technology based on the digital twin uses its ultrarealistic, multisystem, and high-precision characteristics to simulate fault data that are difficult to obtain in an actual production line to train a reliable fault diagnosis model. In this article, we first propose an improved random forest (IRF) algorithm, which reselects decision trees with high accuracy and large differences through hierarchical clustering and gives them weights. Digital twin technology is used to simulate a large number of balanced datasets to train the model, and the trained model can be transferred to a physical production line through transfer learning for fault diagnosis. Finally, the feasibility of our proposed algorithm is verified through a case study of an automobile rear axle assembly line, for which the accuracy of the proposed algorithm reaches 97.8%. The traditional machine learning plus digital twin fault diagnosis method proposed in this paper involves some generalization, and thus has practical value when extended to other fields.

Funder

Development and application of key technologies for car intelligent chassis assembly line

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. State of the art and future directions of digital twin-enabled smart assembly automation in discrete manufacturing industries;International Journal of Computer Integrated Manufacturing;2024-08-21

2. Shape-performance coupled digital twin based on heterogeneous data from multiple sources: a scissor lift platform example;Engineering with Computers;2024-07-29

3. Application of anomaly detection based on deep learning in digital twin;Third International Symposium on Computer Applications and Information Systems (ISCAIS 2024);2024-07-11

4. Machine Learning and Genetic Algorithm Integration to Optimize Paraffin Coating Uniformity;Transactions of the Korean Society of Mechanical Engineers - A;2024-06-30

5. Digital twin-driven prognostics and health management for industrial assets;Scientific Reports;2024-06-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3