Nonlinear Loads Compensation Using a Shunt Active Power Filter Controlled by Feedforward Neural Networks

Author:

Flores-Garrido Juan L.ORCID,Salmerón Patricio,Gómez-Galán Juan A.ORCID

Abstract

The shunt active power filter (SAPF) is a widely used tool for compensation of disturbances in three-phase electric power systems. A high number of control methods have been successfully developed, including strategies based on artificial neural networks. However, the typical feedforward neural network, the multilayer perceptron, which has provided effective solutions to many nonlinear problems, has not yet been employed with satisfactory performance in the implementation of the SAPF control for obtaining the reference currents. In order to prove the capabilities of this simple neural topology, this work describes a suitable strategy of use, based on the accurate estimation of the Fourier coefficients corresponding to the fundamental harmonic of any distorted voltage or current. An effective training method has been developed, consisting of the use of many distorted patterns. The new generation procedure uses random combinations of multiple harmonics, including the possible nominal frequency deviations occurring in real power systems. The design of the generation of reference signals through computations based on the Fourier coefficients is presented. The objectives were the harmonic mitigation and power factor correction. Practical cases were tested through simulation and also by using an experimental platform, showing the feasibility of the proposal.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impact of a Weak Grid-network on a Grid-tied Solar Photovoltaic System Supplying a Non-linear Load;2023 International Conference on Electrical, Communication and Computer Engineering (ICECCE);2023-12-30

2. Deep HarDec: Deep Neural Network Applied to Estimate Harmonic Decomposition;Energy Informatics;2023-12-02

3. Active Power Filters Applied to Smart Grids: Harmonic Content Estimation Based on Deep Neural Network;Smart Grids—Renewable Energy, Power Electronics, Signal Processing and Communication Systems Applications;2023-11-22

4. Solar-Powered Shunt Active Power Filter Using an Advanced Inverter Topology ZSI: A Review;2023 IEEE AFRICON;2023-09-20

5. Instantaneous Reactive Power Theory in the Geometric Algebra Framework;Applied Sciences;2023-01-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3