Volatile Organic Compound (VOC) Emissions from a Personal Care Polymer-Based Item: Simulation of the Inhalation Exposure Scenario Indoors under Actual Conditions of Use

Author:

Palmisani JolandaORCID,Di Gilio AlessiaORCID,Cisternino Ezia,Tutino Maria,de Gennaro GianluigiORCID

Abstract

Polymer-based items may release Volatile Organic Compounds (VOCs) and odors indoors, contributing to the overall VOC inhalation exposure for end users and building occupants. The main objective of the present study is the evaluation of short-term inhalation exposure to VOCs due to the use of a personal care polymer-based item, namely, one of three electric heating bags, through a strategic methodological approach and the simulation of a ‘near-to-real’ exposure scenario. Seventy two-hour test chamber experiments were first performed to characterize VOC emissions with the items on ‘not-heating mode’ and to derive related emission rates. The polyester bag was revealed to be responsible for the highest emissions both in terms of total VOC and naphthalene emissions (437 and 360 µg/m3, respectively), compared with the other two bags under investigation. Complementary investigations on ‘heating mode’ and the simulation of the exposure scenario inside a 30 m3 reference room allowed us to highlight that the use of the polyester bag in the first life-cycle period could determine a naphthalene concentration (42 µg/m3) higher than the reference Lowest Concentration of Interest (LCI) value (10 µg/m3) reported in European evaluation schemes. The present study proposes a strategic methodological approach highlighting the need for the simulation of a realistic scenario when potential hazards for human health need to be assessed.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3