Dynamics of Biochar-Silty Clay Interaction Using In-House Fabricated Cyclic Loading Apparatus: A Case Study of Coastal Clay and Novel Peach Biochar from the Qingdao Region of China

Author:

Liu Junwei,Ganesan Suriya Prakash,Li Xin,Garg Ankit,Singhal Aman,Dosetti Karthik Datta,Feng HaibaoORCID

Abstract

Biochar has been recently investigated as an eco-friendly material in bio-engineered slopes/landfill covers. A majority of recent studies have focused on analyzing water retention behavior while very few have examined dynamic behavior (i.e., cyclic loading due to earthquake, wind, or wave) of biochar amended soil. As far as the authors are aware, there is no study on the dynamic behavior of biochar amended soils. Considering the above mentioned study as a major objective, field excavated soil was collected and mixed with in-house produced biochar from peach endocarps, at three amendment rates (5%, 10%, and 15%). The un-amended bare soil and biochar amended soil were imposed to a cyclic load in a self-designed apparatus and the corresponding stress-strain parameters were measured. Dynamic parameters such as shear modulus and damping ratio were computed and the results were compared between bare and biochar amended soil. Furthermore, the residual cyclic strength of each soil types were correlated with an estimated void ratio to understand the interrelation between dynamic loading responses and biochar amended soils. The major outcomes of this study show that the addition of biochar decreases the void ratio, thereby increasing the shear modulus and residual cyclic strength. However, the modulus and strength values attenuates after 15 cycles due to an increase in pore water pressure. In contrary, at higher amendment rates, Biochar Amended Soils (BAS) forms clay-carbon complex and decreases both shear modulus and residual cyclic strength.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3