Infrared/Visible Light Fire Image Fusion Method Based on Generative Adversarial Network of Wavelet-Guided Pooling Vision Transformer

Author:

Wei Haicheng1ORCID,Fu Xinping2,Wang Zhuokang2,Zhao Jing3

Affiliation:

1. School of Medical Technology, North Minzu University, Yinchuan 750021, China

2. School of Electrical and Information Engineering, North Minzu University, Yinchuan 750021, China

3. School of Information Engineering, Ningxia University, Yinchuan 750021, China

Abstract

To address issues of detail loss, limited matching datasets, and low fusion accuracy in infrared/visible light fire image fusion, a novel method based on the Generative Adversarial Network of Wavelet-Guided Pooling Vision Transformer (VTW-GAN) is proposed. The algorithm employs a generator and discriminator network architecture, integrating the efficient global representation capability of Transformers with wavelet-guided pooling for extracting finer-grained features and reconstructing higher-quality fusion images. To overcome the shortage of image data, transfer learning is utilized to apply the well-trained model to fire image fusion, thereby improving fusion precision. The experimental results demonstrate that VTW-GAN outperforms the DenseFuse, IFCNN, U2Fusion, SwinFusion, and TGFuse methods in both objective and subjective aspects. Specifically, on the KAIST dataset, the fusion images show significant improvements in Entropy (EN), Mutual Information (MI), and Quality Assessment based on Gradient-based Fusion (Qabf) by 2.78%, 11.89%, and 10.45%, respectively, over the next-best values. On the Corsican Fire dataset, compared to data-limited fusion models, the transfer-learned fusion images enhance the Standard Deviation (SD) and MI by 10.69% and 11.73%, respectively, and compared to other methods, they perform well in Average Gradient (AG), SD, and MI, improving them by 3.43%, 4.84%, and 4.21%, respectively, from the next-best values. Compared with DenseFuse, the operation efficiency is improved by 78.3%. The method achieves favorable subjective image outcomes and is effective for fire-detection applications.

Funder

the Natural Science Foundation of Ningxia

National Natural Science Foundation of China

the Leading Talent Project Plan of the State Ethnic Affairs Commission

the Ningxia Technology Innovative Team of Advanced Intelligent Perception and Control, Leading talents in scientific and technological innovation of Ningxia

The Ningxia Autonomous Region Graduate Education Reform Project “Research on the Cultivation Model of Graduate Innovation Ability Based on Tutor Team Collaboration”

Graduate Student Innovation Project of North Minzu University

Ningxia 2021 Industry University Collaborative Education Project “Construction and Exploration of the Four in One Practice Platform under the Background of New Engineering”

North Minzu University for special funds for basic scientific research operations of central universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3