Denitrification Mechanism of Heterotrophic Aerobic Denitrifying Pseudomonas hunanensis Strain DC-2 and Its Application in Aquaculture Wastewater

Author:

Sui Xinya12,Wu Xingqiang23ORCID,Xiao Bangding23,Wang Chunbo23,Tian Cuicui23

Affiliation:

1. College of Fisheries and Life Sciences, Dalian Ocean University, Dalian 116023, China

2. Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China

3. Dianchi Lake Ecosystem Observation and Research Station of Yunnan Province, Kunming 650228, China

Abstract

A novel heterotrophic aerobic denitrifying Pseudomonas hunanensis strain DC-2 was screened from the sediments of Lake Dianchi and identified with high nitrification/denitrification ability. Within 30 h, the removal efficiency of ammonium-N and nitrate-N could reach 98.8% and 88.4%, respectively. The results of the single-factor experiments indicated that strain DC-2 exhibited excellent denitrification ability under the conditions of using sodium citrate as the nitrogen source, with an initial pH of 7, a C/N ratio of 10, and a temperature of 30 °C. Nitrogen balance experiments suggested that this strain removed N mainly via assimilation. Moreover, the N removal pathway was explored by genome and enzymatic assays, and a complex nitrogen metabolism pathway was established, including heterotrophic nitrification-aerobic denitrification (HN-AD), assimilatory reduction of nitrate (ANRA), and ammonia assimilation. Additionally, strain DC-2 was immobilized into particles for denitrification, demonstrating excellent efficacy in continuous total nitrogen removal (84.8% for TN). Hence, strain DC-2 demonstrated significant potential in treating real aquaculture wastewater.

Funder

the China’s National Key R&D Programmes

the Key R&D plan of Hubei Province

the Yunnan Province-Kunming City Major Science and Technology Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3