Effect of Green Infrastructure with Different Woody Plant Root Systems on the Reduction of Runoff Nitrogen

Author:

Zhang Bei1,Chen Liang2ORCID,Gao Taolve1

Affiliation:

1. College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Xianyang 712100, China

2. School of Civil Engineering, Tianjin University, Tianjin 300072, China

Abstract

Rainfall-runoff nitrogen (N) pollution has emerged as the primary source of water contamination due to rapid urbanization. Green infrastructure (GI), as the representative measure, is widely used in controlling N pollution in runoff. However, there is limited research on the impact of woody plants on N reduction in GIs. Therefore, this study aimed to investigate the influence and relationship of Sophora japonica (with tap root) and Malus baccata (with fibrous root) on N removal in GIs. Utilizing the advanced root analysis software WinRHIZO (version 4.0b), a meticulous examination of the morphological traits of plant roots was conducted. The findings unveiled a striking contrast between the root systems of two species: S. japonica primarily boasts a vertically oriented root configuration, whereas M. baccata’s root system is characterized by an extensively lateral, or horizontal, growth pattern. Specifically, in comparison to S. japonica, the horizontal roots of M. baccata demonstrated a substantial superiority, with their total root length measuring 10.95 times longer, the surface area spanning 6.25 times wider, and the cumulative volume being 3.93 times greater. For comparing the load reduction rates on runoff NH3-N, NO3-N, and TN of the different root morphologies’ GIs, S. japonica GI had the highest purification effect on the three pollutants, and the average load reduction rates of three pollutants reached 67.74%, 33.83%, and 38.96%, respectively, which were 11.42%, 27.46%, and 6.16% higher than those of the control. The variance contribution rate of vertical root and horizontal root characteristics on runoff nitrogen load reduction accounted for 86.47% of the total root contribution rate. The volume of vertical roots emerged as the most crucial characteristic factor affecting the reduction of N load.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3