Comprehensive Design Method of a High-Frequency-Response Fast Tool Servo System Based on a Full-Frequency Error Control Algorithm

Author:

Li ZelongORCID,Guan Chaoliang,Dai Yifan,Xue Shuai,Yin Lianmin

Abstract

With the development of optoelectronic information technology, high-performance optical systems require an increasingly higher surface accuracy of optical mirrors. The fast tool servo (FTS) based on the piezoelectric actuator is widely used in the compensation machining of high-precision optical mirrors. However, with the low natural frequency of mechanical structures, hysteresis of the piezoelectric actuators, and phase delay of the control systems, conventional FTS systems face problems such as a low working frequency and a large tracking error. This study presents a method for the design of a high-performance FTS system. First, a flexure hinge servo turret with a high natural frequency was designed through multi-objective optimization and finite element simulations. Subsequently, a composite control algorithm was proposed, targeting the problems of hysteresis and phase delay. The modified Prandtl–Ishlinskii inverse hysteresis model was used to overcome the hysteresis effect and a zero-phase error tracker was designed to reduce the phase error. The experimental results reveal that the tracking error of the designed FTS system was <10% in the full frequency range (0–1000 Hz).

Funder

Science Challenge Project of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3