Transfer of Tactile Sensors Using Stiction Effect Temporary Handling

Author:

Zhong PengORCID,Sun Ke,Zheng Chaoyue,Yang HengORCID,Li Xinxin

Abstract

A novel method for transfer of tactile sensors using stiction effect temporary handling (SETH) is presented to simplify the microelectromechanical-system (MEMS)/CMOS integration process, improve the process reliability and electrical performance, and reduce material constriction. The structure of the tactile sensor and the reroute substrate were first manufactured separately. Following the release process, the stiction-contact structures, which are designed to protect the low-stress silicon nitride diaphragm of the tactile sensor and prevent the low-stress silicon nitride diaphragm from moving during the subsequent bonding process, are temporarily bonded to the substrate owing to the stiction effect. After the released tactile sensor is bonded to the reroute substrate by Au–Si eutectic flip-chip bonding, a pulling force perpendicular to the bonded die is applied to break away the temporary supported beam of the tactile sensor, and the tactile sensor is then successfully transferred to the reroute substrate. The size of the transferred tactile sensor is as small as 180 μm × 180 μm × 1.2 μm, and the force area of the tactile sensor is only 120 μm × 120 μm × 1.2 μm. The maximum misalignment of the flip-chip bonding process is approximately 1.5 μm. The tactile sensors are tested from 0 to 17.1 kPa when the power supply is 5 V, resulting in a sensitivity of 0.22 mV/V/kPa, 0.26 mV/V/kPa, 0.27 mV/V/kPa and 0.27 mV/V/kPa, separately. The stress caused by the Au–Si eutectic flip-chip bonding ranges from −5.83 to +5.54 kPa. The temporary bonding strength caused by stiction is calculated to be larger than 7.06 kPa and less than 22.31 kPa. The shear strength of the bonded test structure is approximately 30.74 MPa and the yield of the transferred tactile sensors is as high as 90%.

Funder

National Natural Science Foundation of China

Shanghai Municipal Science and Technology Commission

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3