3D-Printed Auxetic Skin Scaffold for Decreasing Burn Wound Contractures at Joints

Author:

Park Jung-Kyu1ORCID,Kim Kun Woo2,Kim Hyun Joo2ORCID,Choi Seon Young2,Son Kuk Hui2,Lee Jin Woo13ORCID

Affiliation:

1. Department of Health Sciences and Technology, GAIHST, Gachon University, 155, Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea

2. Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, College of Medicine, Gachon University, Namdong-daero 774 beon-gil, Namdong-gu, Incheon 21565, Republic of Korea

3. Department of Molecular Medicine, College of Medicine, Gachon University, 155, Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea

Abstract

For patients with severe burns that consist of contractures induced by fibrous scar tissue formation, a graft must adhere completely to the wound bed to enable wound healing and neovascularization. However, currently available grafts are insufficient for scar suppression owing to their nonuniform pressure distribution in the wound area. Therefore, considering the characteristics of human skin, which is omnidirectionally stretched via uniaxial stretching, we proposed an auxetic skin scaffold with a negative Poisson’s ratio (NPR) for tight adherence to the skin scaffold on the wound bed site. Briefly, a skin scaffold with the NPR effect was fabricated by creating a fine pattern through 3D printing. Electrospun layers were also added to improve adhesion to the wound bed. Fabricated skin scaffolds displayed NPR characteristics (−0.5 to −0.1) based on pulling simulation and experiment. Finger bending motion tests verified the decreased marginal forces (<50%) and deformation (<60%) of the NPR scaffold. In addition, the filling of human dermal fibroblasts in most areas (>95%) of the scaffold comprising rarely dead cells and their spindle-shaped morphologies revealed the high cytocompatibility of the developed scaffold. Overall, the developed skin scaffold may help reduce wound strictures in the joints of patients with burns as it exerts less pressure on the wound margin.

Funder

Korea Ministry of Environment

Gachon University Gil Medical Center

Ministry of Science and ICT, Ministry of Health and Welfare

Publisher

MDPI AG

Subject

Biomedical Engineering,Biomaterials

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3