Abstract
With the upsurge in use of Unmanned Aerial Vehicles (UAVs), drone detection and pose estimation by using optical sensors becomes an important research subject in cooperative flight and low-altitude security. The existing technology only obtains the position of the target UAV based on object detection methods. To achieve better adaptability and enhanced cooperative performance, the attitude information of the target drone becomes a key message to understand its state and intention, e.g., the acceleration of quadrotors. At present, most of the object 6D pose estimation algorithms depend on accurate pose annotation or a 3D target model, which costs a lot of human resource and is difficult to apply to non-cooperative targets. To overcome these problems, a quadrotor 6D pose estimation algorithm was proposed in this paper. It was based on keypoints detection (only need keypoints annotation), relational graph network and perspective-n-point (PnP) algorithm, which achieves state-of-the-art performance both in simulation and real scenario. In addition, the inference ability of our relational graph network to the keypoints of four motors was also evaluated. The accuracy and speed were improved significantly compared with the state-of-the-art keypoints detection algorithm.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献