Unsupervised Pattern Analysis to Differentiate Multiple Sclerosis Phenotypes Using Principal Component Analysis on Various MRI Sequences

Author:

van der Weijden Chris W. J.12ORCID,Pitombeira Milena S.3,Peretti Débora E.1,Campanholo Kenia R.3,Kolinger Guilherme D.1,Rimkus Carolina M.3ORCID,Buchpiguel Carlos Alberto3,Dierckx Rudi A. J. O.1,Renken Remco J.4,Meilof Jan F.56,de Vries Erik F. J.1ORCID,de Paula Faria Daniele3ORCID

Affiliation:

1. Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands

2. Department of Radiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands

3. Laboratory of Nuclear Medicine, Department of Radiology and Oncology, University of Sao Paulo, São Paulo 05508-220, Brazil

4. Department of Neuroscience, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands

5. Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands

6. Department of Neurology, Martini Ziekenhuis, 9728 NT Groningen, The Netherlands

Abstract

Background: Multiple sclerosis (MS) has two main phenotypes: relapse-remitting MS (RRMS) and progressive MS (PMS), distinguished by disability profiles and treatment response. Differentiating them using conventional MRI is challenging. Objective: This study explores the use of scaled subprofile modelling using principal component analysis (SSM/PCA) on MRI data to distinguish between MS phenotypes. Methods: MRI scans were performed on patients with RRMS (n = 30) and patients with PMS (n = 20), using the standard sequences T1w, T2w, T2w-FLAIR, and the myelin-sensitive sequences magnetisation transfer (MT) ratio (MTR), quantitative MT (qMT), inhomogeneous MT ratio (ihMTR), and quantitative inhomogeneous MT (qihMT). Results: SSM/PCA analysis of qihMT images best differentiated PMS from RRMS, with the highest specificity (87%) and positive predictive value (PPV) (83%), but a lower sensitivity (67%) and negative predictive value (NPV) (72%). Conversely, T1w data analysis showed the highest sensitivity (93%) and NPV (89%), with a lower PPV (67%) and specificity (53%). Phenotype classification agreement between T1w and qihMT was observed in 57% of patients. In the subset with concordant classifications, the sensitivity, specificity, PPV, and NPV were 100%, 88%, 90%, and 100%, respectively. Conclusions: SSM/PCA on MRI data revealed distinctive patterns for MS phenotypes. Optimal discrimination occurred with qihMT and T1w sequences, with qihMT identifying PMS and T1w identifying RRMS. When qihMT and T1w analyses align, MS phenotype prediction improves.

Funder

General Electric (GE) Healthcare

Nederlandse organisatie voor gezondheidsonderzoek en zorginnovatie

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3