Improving Tumor-Infiltrating Lymphocytes Score Prediction in Breast Cancer with Self-Supervised Learning

Author:

Kim Sijin1ORCID,Rakib Hasan Kazi1ORCID,Ando Yu1ORCID,Ko Seokhwan1,Lee Donghyeon1,Park Nora Jee-Young23,Cho Junghwan4ORCID

Affiliation:

1. Department of Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea

2. Department of Pathology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea

3. Department of Pathology, Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea

4. Clinical Omics Institute, Kyungpook National University, Daegu 41405, Republic of Korea

Abstract

Tumor microenvironment (TME) plays a pivotal role in immuno-oncology, which investigates the intricate interactions between tumors and the human immune system. Specifically, tumor-infiltrating lymphocytes (TILs) are crucial biomarkers for evaluating the prognosis of breast cancer patients and have the potential to refine immunotherapy precision and accurately identify tumor cells in specific cancer types. In this study, we conducted tissue segmentation and lymphocyte detection tasks to predict TIL scores by employing self-supervised learning (SSL) model-based approaches capable of addressing limited labeling data issues. Our experiments showed a 1.9% improvement in tissue segmentation and a 2% improvement in lymphocyte detection over the ImageNet pre-training model. Using these SSL-based models, we achieved a TIL score of 0.718 with a 4.4% improvement. In particular, when trained with only 10% of the entire dataset, the SwAV pre-trained model exhibited a superior performance over other models. Our work highlights improved tissue segmentation and lymphocyte detection using the SSL model with less labeled data for TIL score prediction.

Funder

National Research Foundation of Korea

Ministry of Education

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3