Effect of Equipment on the Accuracy of Accelerometer-Based Human Activity Recognition in Extreme Environments

Author:

Ward Stephen1ORCID,Hu Sijung1ORCID,Zecca Massimiliano1ORCID

Affiliation:

1. Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK

Abstract

A little explored area of human activity recognition (HAR) is in people operating in relation to extreme environments, e.g., mountaineers. In these contexts, the ability to accurately identify activities, alongside other data streams, has the potential to prevent death and serious negative health events to the operators. This study aimed to address this user group and investigate factors associated with the placement, number, and combination of accelerometer sensors. Eight participants (age = 25.0 ± 7 years) wore 17 accelerometers simultaneously during lab-based simulated mountaineering activities, under a range of equipment and loading conditions. Initially, a selection of machine learning techniques was tested. Secondly, a comprehensive analysis of all possible combinations of the 17 accelerometers was performed to identify the optimum number of sensors, and their respective body locations. Finally, the impact of activity-specific equipment on the classifier accuracy was explored. The results demonstrated that the support vector machine (SVM) provided the most accurate classifications of the five machine learning algorithms tested. It was found that two sensors provided the optimum balance between complexity, performance, and user compliance. Sensors located on the hip and right tibia produced the most accurate classification of the simulated activities (96.29%). A significant effect associated with the use of mountaineering boots and a 12 kg rucksack was established.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A human-cyber-physical system for Operator 5.0 smart risk assessment;The International Journal of Advanced Manufacturing Technology;2023-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3