Affiliation:
1. Department of Industrial Engineering, Stellenbosch University, 145 Banghoek Rd., Stellenbosch 7600, South Africa
2. ESB Business School, Reutlingen University, Alteburgstr. 150, 72762 Reutlingen, Germany
3. Fraunhofer Institute for Manufacturing Engineering and Automation, Alteburgstr. 150, 72762 Reutlingen, Germany
Abstract
Supply chains have evolved into dynamic, interconnected supply networks, which increases the complexity of achieving end-to-end traceability of object flows and their experienced events. With its capability of ensuring a secure, transparent, and immutable environment without relying on a trusted third party, the emerging blockchain technology shows strong potential to enable end-to-end traceability in such complex multitiered supply networks. This paper aims to overcome the limitations of existing blockchain-based traceability architectures regarding their object-related event mapping ability, which involves mapping the creation and deletion of objects, their aggregation and disaggregation, transformation, and transaction, in one holistic architecture. Therefore, this paper proposes a novel ‘blueprint-based’ token concept, which allows clients to group tokens into different types, where tokens of the same type are non-fungible. Furthermore, blueprints can include minting conditions, which, for example, are necessary when mapping assembly processes. In addition, the token concept contains logic for reflecting all conducted object-related events in an integrated token history. Finally, for validation purposes, this article implements the architecture’s components in code and proves its applicability based on the Ethereum blockchain. As a result, the proposed blockchain-based traceability architecture covers all object-related supply chain events and proves its general-purpose end-to-end traceability capabilities of object flows.
Funder
Baden-Württemberg Ministry of Science, Research and Arts
Reutlingen University in the funding programme Open Access Publishing
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献