Sensor-Aided V2X Beam Tracking for Connected Automated Driving: Distributed Architecture and Processing Algorithms

Author:

Brambilla MattiaORCID,Combi Lorenzo,Matera AndreaORCID,Tagliaferri Dario,Nicoli Monica,Spagnolini UmbertoORCID

Abstract

This paper focuses on ultra-reliable low-latency Vehicle-to-Anything (V2X) communications able to meet the extreme requirements of high Levels of Automation (LoA) use cases. We introduce a system architecture and processing algorithms for the alignment of highly collimated V2X beams based either on millimeter-Wave (mmW) or Free-Space Optics (FSO). Beam-based V2X communications mainly suffer from blockage and pointing misalignment issues. This work focuses on the latter case, which is addressed by proposing a V2X architecture that enables a sensor-aided beam-tracking strategy to counteract the detrimental effect of vibrations and tilting dynamics. A parallel low-rate, low-latency, and reliable control link, in fact, is used to exchange data on vehicle kinematics (i.e., position and orientation) that assists the beam-pointing along the line-of-sight between V2X transceivers (i.e., the dominant multipath component for mmW, or the direct link for FSO). This link can be based on sub-6 GHz V2X communication, as in 5G frequency range 1 (FR1). Performance assessments are carried out to validate the robustness of the proposed methodology in coping with misalignment induced by vehicle dynamics. Numerical results show that highly directional mmW and/or FSO communications are promising candidates for massive data-rate vehicular communications even in high mobility scenarios.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference69 articles.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3