Abstract
Streaming video is responsible for the bulk of Internet traffic these days. For this reason, Internet providers and network operators try to make predictions and assessments about the streaming quality for an end user. Current monitoring solutions are based on a variety of different machine learning approaches. The challenge for providers and operators nowadays is that existing approaches require large amounts of data. In this work, the most relevant quality of experience metrics, i.e., the initial playback delay, the video streaming quality, video quality changes, and video rebuffering events, are examined using a voluminous data set of more than 13,000 YouTube video streaming runs that were collected with the native YouTube mobile app. Three Machine Learning models are developed and compared to estimate playback behavior based on uplink request information. The main focus has been on developing a lightweight approach using as few features and as little data as possible, while maintaining state-of-the-art performance.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献