A Two-Stream Symmetric Network with Bidirectional Ensemble for Aerial Image Matching

Author:

Park Jae-HyunORCID,Nam Woo-JeoungORCID,Lee Seong-WhanORCID

Abstract

In this paper, we propose a novel method to precisely match two aerial images that were obtained in different environments via a two-stream deep network. By internally augmenting the target image, the network considers the two-stream with the three input images and reflects the additional augmented pair in the training. As a result, the training process of the deep network is regularized and the network becomes robust for the variance of aerial images. Furthermore, we introduce an ensemble method that is based on the bidirectional network, which is motivated by the isomorphic nature of the geometric transformation. We obtain two global transformation parameters without any additional network or parameters, which alleviate asymmetric matching results and enable significant improvement in performance by fusing two outcomes. For the experiment, we adopt aerial images from Google Earth and the International Society for Photogrammetry and Remote Sensing (ISPRS). To quantitatively assess our result, we apply the probability of correct keypoints (PCK) metric, which measures the degree of matching. The qualitative and quantitative results show the sizable gap of performance compared to the conventional methods for matching the aerial images. All code and our trained model, as well as the dataset are available online.

Funder

Agency for Defense Development

Defense Acquisition Program Administration

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Approach Extracting Extreme Points Combining Multidirection Phase Superposition and Weighted Moment Diagram for Matching Multi-Modal Images;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

2. Aerial remote sensing image registration based on dense residual network of asymmetric convolution;International Journal of Computational Science and Engineering;2024

3. DPCN++: Differentiable Phase Correlation Network for Versatile Pose Registration;IEEE Transactions on Pattern Analysis and Machine Intelligence;2023-12

4. Remote sensing image registration based on multi-head self-attention mechanism;2023 8th International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS);2023-11-23

5. Remote sensing image registration based on global sensing convolution and feature fusion;2023 8th International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS);2023-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3