Abstract
The level of spatial co-registration between airborne laser scanning (ALS) and ground data can determine the goodness of the statistical inference used in forest inventories. The importance of positioning methods in the field can increase, depending on the structural complexity of forests. An area-based approach was followed to conduct forest inventory over seven National Forest Inventory (NFI) forest strata in Spain. The benefit of improving the co-registration goodness was assessed through model transferability using low- and high-accuracy positioning methods. Through the inoptimality losses approach, we evaluated the value of good co-registered data, while assessing the influence of forest structural complexity. When using good co-registered data in the 4th NFI, the mean tree height (HTmean), stand basal area (G) and growing stock volume (V) models were 2.6%, 10.6% and 14.7% (in terms of root mean squared error, RMSE %), lower than when using the coordinates from the 3rd NFI. Transferring models built under poor co-registration conditions using more precise data improved the models, on average, 0.3%, 6.0% and 8.8%, while the worsening effect of using low-accuracy data with models built in optimal conditions reached 4.0%, 16.1% and 16.2%. The value of enhanced data co-registration varied between forests. The usability of current NFI data under modern forest inventory approaches can be restricted when combining with ALS data. As this research showed, investing in improving co-registration goodness over a set of samples in NFI projects enhanced model performance, depending on the type of forest and on the assessed forest attributes.
Subject
General Earth and Planetary Sciences
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献