Abstract
The paper proposes a transparent approach for mapping the status of environmental phenomena from multisource information based on both soft computing and machine learning. It is transparent, intended as human understandable as far as the employed criteria, and both knowledge and data-driven. It exploits remote sensing experts’ interpretations to define the contributing factors from which partial evidence of the environmental status are computed by processing multispectral images. Furthermore, it computes an environmental status indicator (ESI) map by aggregating the partial evidence degrees through a learning mechanism, exploiting volunteered geographic information (VGI). The approach is capable of capturing the specificities of local context, as well as to cope with the subjectivity of experts’ interpretations. The proposal is applied to map the status of standing water areas (i.e., water bodies and rivers and human-driven or natural hazard flooding) using multispectral optical images by ESA Sentinel-2 sources. VGI comprises georeferenced observations created both in situ by agronomists using a mobile application and by photointerpreters interacting with a geographic information system (GIS) using several information layers. Results of the validation experiments were performed in three areas of Northern Italy characterized by distinct ecosystems. The proposal showed better performances than traditional methods based on single spectral indexes.
Subject
General Earth and Planetary Sciences
Reference49 articles.
1. “Contextualized VGI” Creation and Management to Cope with Uncertainty and Imprecision
2. Humanitarian Open Street Map
https://www.hotosm.org/docs/
3. Geotemporal Querying of Social Networks and Summarization;Arcaini,2018
4. Critical analysis of Big Data challenges and analytical methods
5. A Flexible Decision support approach to model ill-defined knowledge in GIS;Bordogna,2006
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献