Knowledge and Data-Driven Mapping of Environmental Status Indicators from Remote Sensing and VGI

Author:

Goffi Alessia,Bordogna GloriaORCID,Stroppiana DanielaORCID,Boschetti MircoORCID,Brivio Pietro AlessandroORCID

Abstract

The paper proposes a transparent approach for mapping the status of environmental phenomena from multisource information based on both soft computing and machine learning. It is transparent, intended as human understandable as far as the employed criteria, and both knowledge and data-driven. It exploits remote sensing experts’ interpretations to define the contributing factors from which partial evidence of the environmental status are computed by processing multispectral images. Furthermore, it computes an environmental status indicator (ESI) map by aggregating the partial evidence degrees through a learning mechanism, exploiting volunteered geographic information (VGI). The approach is capable of capturing the specificities of local context, as well as to cope with the subjectivity of experts’ interpretations. The proposal is applied to map the status of standing water areas (i.e., water bodies and rivers and human-driven or natural hazard flooding) using multispectral optical images by ESA Sentinel-2 sources. VGI comprises georeferenced observations created both in situ by agronomists using a mobile application and by photointerpreters interacting with a geographic information system (GIS) using several information layers. Results of the validation experiments were performed in three areas of Northern Italy characterized by distinct ecosystems. The proposal showed better performances than traditional methods based on single spectral indexes.

Funder

Fondazione Cariplo

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference49 articles.

1. “Contextualized VGI” Creation and Management to Cope with Uncertainty and Imprecision

2. Humanitarian Open Street Map https://www.hotosm.org/docs/

3. Geotemporal Querying of Social Networks and Summarization;Arcaini,2018

4. Critical analysis of Big Data challenges and analytical methods

5. A Flexible Decision support approach to model ill-defined knowledge in GIS;Bordogna,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3