Abstract
Masking of cirrus clouds in optical satellite imagery is an important step in automated processing chains. Firstly, it is a prerequisite to a subsequent removal of cirrus effects, and secondly, it affects the atmospheric correction, i.e., aerosol and surface reflectance retrievals. Cirrus clouds can be detected with a narrow bandwidth channel near 1.38 μ m and operational detection algorithms have been developed for Landsat-8 and Sentinel-2 images. However, concerning cirrus removal in the case of elevated surfaces, current methods do not separate the ground reflected signal from the cirrus signal in the 1.38 μ m channel when performing an atmospheric correction, often resulting in an overcorrection of the cirrus influence. We propose a new operational algorithm using a Digital Elevation Model (DEM) to estimate the surface and cirrus cloud contributions in the 1.38 μ m channel and to remove cirrus effects during the surface reflectance retrieval. Due to the highly variable nature of cirrus clouds and terrain conditions, no generic quantitative results could be derived. However, results for typical cases and the achieved improvement in cirrus removal are given for selected scenes and critical issues and limitations of the approach are discussed.
Subject
General Earth and Planetary Sciences
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献