Scattering Feature Set Optimization and Polarimetric SAR Classification Using Object-Oriented RF-SFS Algorithm in Coastal Wetlands

Author:

Chen Yuanyuan,He XiufengORCID,Xu Jia,Zhang RongchunORCID,Lu Yanyan

Abstract

The utilization of advanced remote sensing methods to monitor the coastal wetlands is essential for conservation and sustainable development. With multiple polarimetric channels, the polarimetric synthetic aperture radar (PolSAR) is increasingly employed in land cover classification and information extraction, as it has more scattering information than regular SAR images. Polarimetric decomposition is often used to extract scattering information from polarimetric SAR. However, distinguishing all land cover types using only one polarimetric decomposition in complex ecological environments such as coastal wetlands is not easy, and thus integration of multiple decomposition algorithms is an effective means of land cover classification. More than 20 decompositions were used in this research to extract polarimetric scattering features. Furthermore, a new algorithm combining random forest (RF) with sequential forward selection (SFS) was applied, in which the importance values of all polarimetric features can be evaluated quantitatively, and the polarimetric feature set can be optimized. The experiments were conducted in the Jiangsu coastal wetlands, which are located in eastern China. This research demonstrated that the classification accuracies were improved relative to regular decision tree methods, and the process of polarimetric scattering feature set optimization was intuitive. Furthermore, the scattering matrix elements and scattering features derived from H / α , Yamaguchi3, VanZyl3, and Krogager decompositions were determined to be very supportive of land cover identification in the Jiangsu coastal wetlands.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3